From obfuscation to white-box crypto:
relaxation and security notions

Matthieu Rivain

WhibOx 2016, 14 Aug, UCSB

]

CRYPTOCGXPERTS "

O

What does this program do?

([1+/H/) [1&11>>1]+(+ [[1+(1-"1<<1)+ (T 1+1e 1)+ (1%11) + (11 1>>1 | 1)+ ("1+1e1)+ (. 17 11) 1) [[([1+! 1 [
111) (11711 1+ LI{+{31 [1/1.1&1] [1]T+CL01+111/ 110 [+ 1 1] O+ [1e1>>11+[[1, [1+{}] [1&11>>
1101101+ CO+ 01 [111]) [1&1]+[{}, 1e1, 11+{3] [~ (1. 1+1. 1) T [171<<1]+ (11/ 1 {3+{}) [1-"1<<1]+ [1 {
FHOIHFAIDI+1]+(/7 /01 111+/&/) L1~ 111+ {3, [+43, 1] [1&11>>1] [1+1e1+1]+ ([I+H{P [
ST+ CO+0+ 0 D11+ 101D [0 +20 0+ 01 L /7 /4D [L 1<)+ [/=/, [1+[1 [11] [
1£11>>1] [1&1>>1]+ ([I+{) [77 (1. 1+1. 1) T+ [1, 11+{3] [1%11] [171<<1]+(111/[I+/1/) ["1+1el+"1]+[!
1/=/+ 1] [+(11>11) T [11] ((1<<17 1)+ ((+(1<1)) == ([1+/=/ [1 [11]+[1) [+ 11+ (1 1 /=/+{}) [1-"11+([
J+1/7) [1="11+ 1 /=/+{P) [1111+1111]]) [11%11]1) ,-711>>1) T (T1-"1el1<<1<< 1)+ ([J+{111: 11113+ []
)[11111.1%11.1%111e11 | 111]+({3+/W/) [1+7 1e1-(T11%1.1<<1) 1+ (+[[1+(11>>1)+ (1] 1>>1 [1) +(11-1
>>1)+(1e1>>1 1)+ (1e1>>1)+(1>>11)+(11>>>D 1) [LC {3+ 1) [11>>>111+ [[I+{3]1 [. 17111 [111%11]]+
([11/00+ 017 [121%111] [CL{I+ 43D [Le1>>1]+ [0, 4]+ [{31T 1 11>>2 11T (1] [17+C 01 [11]+[1) [[1+1
1+0{},1el, ! [11+/7 /1 [1<<11<<1] [1<<17 1T+ (1/114{3) [11+1>>1]+ [0 /=/+{3] [+(111>111)] [111%11]+
([[111+/&/) [1&1>>11+[{}, [1+(+ 01,11 [0 +1] [11-"1+11>>1]+ [T+ 1/=/) [11>>11]+([1+{}) [1]1>>
L1131+ 00+ T [1>>>1] [1&1111+[1) [+ 1) [171<<11+[/=/, [1+[1 [11] [1<<1>>1] [1111+1111]1+([]
{3+ 01) [1<<171>>17+[1, [11]+ 01T [111>>1] [111<<1 1]+ (11/ [T+/1/) [-"11>>1]+ [1 [111]+{}] [+[]]
[111>>1]7 ((1e1-1)+((1&1>>1)==([1+/=/[CH{I+{D) [+ A>T+ 1 /=/+{}) [111<<1]+ (11+{}) [1] <<t
1]+ /=/+{3) [11.11>>11.11]11) [1&1>>1]) ,1-"1<<1)] (“1-"1e1<<1<<1)+ (/1 /+[1) [1+1 1 [11%111]]

What does this program do?

([1+/H/) [1&11>>1]+(+ [[J+(1-"1<<) + (" 1+1e1) +(1%11)+ (11 1>>1 | 1)+ ("1+1e1)+ (.17 11)T) [LCI+! ! [
111 (117 111+ LI +{3] [1/1.1&1] (1] T+ ([0 +111 /040 [+ 1] [T D) [1e1>>1]+ [], [T+{}] [1&11>>
1101 OT+C0O+00 (111D [1&1]+[{}, 1ed, 11+ [T (1. 1+1.)T [171<<1]+ (11/ {3 [1-"1<<1]+[11{
HOIFADIDI0+]+(/ /11 111+/&/) [~ 1]+ {3, [+{3, 1] [1&11>>1] [1+1e1+1]+([I+!1H{P [
LTI [O+13+ 0 O D11+ [0+ 1+ 0D [Q /7 /+{1) [L11<<1]+[/=/, [1+[1 (111 [
1&11>>1] [1&1>>1]1+ ([I+{) [7~ (1. 1+1. 1) T+[1, 11+{3] [1%11] [171<<1]+(111/ [1+/1/) ["1+1e1+71]+[!
1/=/+11] [+(11>11) 1 1117 ((1<<1™ 1)+ ((+(1<1))==([T+/-/[LCH [111+ (1) [+ 1]+ (11 /=/+{3) [1-"11+ ([
J+1/7/) [1="11+ (0 /=/+{}) [1111+1111]1) [11%11]) ,-"11>>1)] ("1-"1e1<<1<<) + ([J+{111:1111}+[]
)[11111.1%11. 1%111e11 | 111+ ({3+/W/) [1+71e1-(T11%1. 1<) 1+ +[[1+ (1 [1>>1)+(1 [1>>1 | 1) +(11-1
>>1)+(1e1>>11)+(1e1>>1)+(1>>11)+(11>>>1)1) L[! {3+[1) [11>>>11]+[[1+{}] [. 17111 [111%11]]+
([11/01+007 [111%111] CCLAI+ T4 [1e1>>11+ 00T, [+ ({311 [11>>1 (1] (11 [D1+ (01 [111+[1) [[1+1
J+[{},1e1, 1 [11+/7 /T [1<<11<<1] [1<<171]+(1/11+{3) [11+1>>1]+ [0 /=/+{}] [+(111>111)] [111%11]+
([0111+/&/) [1&1>>17+ {3, (++ 001,11 [0 +1] [11-"1+11>>10+ [T+ 1 /=/) [11>>11T+ ([0 +{}) [1]1>>
111+ 00+ {3 [1>>>11 [1&11]1+[1) [{3+ 1) [171<<11+[/=/, [1+[1 [1]11 [1<<1>>1] [1111+1111]+([]
+{3+[1) [1<<1~1>>1]+[1, ' [11]+ 1T [111>>1] [111<<1[1]+(11/ [0+/1/) [-"11>>1]+ [[111]+{3] [+ [1]
[111>>1]1 ((1e1-1)+((1&1>>1)==([1+/-/[CH{I+{D) [+(>D T+ 1 /=/+{}) [111<<1]+ (11+{}) [1]1<<1
111+ /=/+{3) [11.11>>11.11]]) [1&1>>1]) ,1-"1<<1)] ("1-"1e1<<1<<1) + (/"1 /+[1) [1+!1 1 [11%111]]

Answer: it prints “hello world"

What does this program do?

#define _ -F<00||--F-00--;

int F=00,00=00;main(){F_00Q) ;printf ("%1.3f\n",4.%-F/00/00);}F_00()

What does this program do?

#define _ -F<00||--F-00--;

int F=00,00=00;main(){F_00Q) ;printf ("%1.3f\n",4.%-F/00/00);}F_00()

Answer: it computes 7

What is (cryptographic) obfuscation?

Obfuscation is the deliberate act of creating obfuscated code, i.e.
[...] that is difficult for humans to understand.

Obfuscators make reverse engineering more difficult [...] but do
not alter the behavior of the obfuscated application.

Obfuscation is the deliberate act of creating obfuscated code, i.e.
[...] that is difficult for humans to understand.

Obfuscators make reverse engineering more difficult [...] but do
not alter the behavior of the obfuscated application.

= make a program unintelligible while preserving its functionality

To protect some secret inside a program

» the algorithm itself (e.g. a factoring program)

efficient
N = p- q ———| factoring |——— (p, q)
algorithm

» some private data used by the program (e.g. conditional data
access)

if pwd correct

pwd, f —)3
3 then disclose f(data)

Obfuscating a hello-word program is useless

Defining obfuscation

Program

= word in a formal (programming) language P € L
=« function execute: £ x {0,1}* — {0,1}*

execute : (P,in) — out
= P implements a function f: A - B if
Vae A : execute(P,a) = f(a)

denoted P = f
= P} and P, are functionally equivalent if

Py = f=P, for some f

denoted P, = P,

Defining obfuscation

Obfuscator
=« algorithm O mapping a program P to a program O(P) st:
= functionality: O(P) = P
= efficiency: O(P) is efficiently executable

= security:
» (informal) O(P) is hard to understand
» (informal) O(P) protects its data

‘ How to formally define the security property?

Virtual Black-Box (VBB) Obfuscation

= O(P) reveals nothing more than the 1/O behavior of P

= Any adversary on O(P) can be simulated with a black-box
access to P

O(P) reveals nothing more than the 1/O behavior of P

Any adversary on O(P) can be simulated with a black-box
access to P

Adversary Simulator

[PrLA(O(P))) = 1] - Pr[87(1) =1]| <&

VBB-O does not exist on general programs (CRYPTO'01)

Counterexample:

uint128_t cannibal (prog P, uinti128_t password)

{
uint128_t secretl = 0xe075b4f4eabf4377claa7202c8cclcch;
uint128_t secret2 = 0x94ff8ec818de3bd8223a62e4cb7c84a4;
if (password == secretl) return secret2;
if (execute(P, null, secretl) == secret2) return secretl;
return O;

}

O(cannibal) (O(cannibal), 0) = secretl

Restricted to circuits i.e. programs without branches/loops

For any two programs Py and P, st P, = P» and |Py| = | P2,
the obfuscated programs O(Py) and O(P) are
indistinguishable

o) —>@_> {(1) =) |ow) —>®_> {‘1)

IPrLA(O(P1)) = 1] - PrLA(O(B)) = 1]| < ¢

Anything that can be learned (efficiently) from O(P) can be
learned from any P’ = P with |P’| » |P|

O - = P = Pl
0o .
ool —()-{ o =)~
Adversary : Simulator

|Pr[A(O(P))) = 1] - Pr[S(P') = 1]| <&

I0 and BPO are equivalent

= i0 = BPO

wl~CO- 1 o0 B=@-@—1

I0 and BPO are equivalent

= i0 = BPO ‘
= BPO = iO |

o) _>@_> {(1’ Ul o) _>@_> {(1’

I0 and BPO are equivalent

= i0 = BPO ‘
= BPO = iO |

o) _>@_> {(1) Ul o) _>@_> {(1’
1””” 0 \\\\\\\\\\
_,@ﬁ [\

10 and BPO are equivalent

= i0 = BPO |
o) —»@—» {‘1’ ©) ﬁ@f@.._, {(1’
= BPO = iO |

o) _>@_> {(1) o(Py) _>@_> {2
LSO

10 and BPO are equivalent

= i0 = BPO |
o) —»@—» {‘1’ ©) ﬁ@f@.._, {(1’
= BPO = iO |

o) _>@_> {(1) o(Py) _>@_> {2

o el
a3

10 and BPO are equivalent

= i0 = BPO |
o) —»@—» {‘1’ ©) ﬁ@f@.._, {(1’
= BPO = iO |

o) _>@_> {(1) @ o(Py) _>@_> {2

o el
a3

iO = BPO ‘
A-@- 1 B-O@-

BPO = iO

o(Py) —@_, {‘1) @ o(Ps) —@_, {2

@ @
O

We use iO in the rest of the presentation

What is white-box cryptography?

“the attacker is assumed to have [...] full access to the encrypting
software and control of the execution environment”

“Our main goal is to make key extraction difficult.”

“While an attacker can clearly make use of the software itself [...],
forcing an attacker to use the installed instance at hand is often of
value to DRM systems providers.”

What is white-box cryptography?

“the attacker is assumed to have [...] full access to the encrypting
software and control of the execution environment”

= obfuscation restricted to encryption (or another crypto primitive)

“Our main goal is to make key extraction difficult.”

“While an attacker can clearly make use of the software itself [...],
forcing an attacker to use the installed instance at hand is often of
value to DRM systems providers.”

— Chow et al. (DRM 2002)

What is white-box cryptography?

“the attacker is assumed to have [...] full access to the encrypting
software and control of the execution environment”

= obfuscation restricted to encryption (or another crypto primitive)

“Our main goal is to make key extraction difficult.”

= relaxed security requirements

“While an attacker can clearly make use of the software itself [...],
forcing an attacker to use the installed instance at hand is often of
value to DRM systems providers.”

— Chow et al. (DRM 2002)

What is white-box cryptography?

“the attacker is assumed to have [...] full access to the encrypting
software and control of the execution environment”

= obfuscation restricted to encryption (or another crypto primitive)

“Our main goal is to make key extraction difficult.”

= relaxed security requirements

“While an attacker can clearly make use of the software itself [...],
forcing an attacker to use the installed instance at hand is often of
value to DRM systems providers.”

= encryption software + secret key

— Chow et al. (DRM 2002)

Obfuscation restricted to a specific class of crypto primitives

Typically, SPN ciphers:

m—

k’l

)

LL

B E eI

LL

[Exlfealealealfenfenesen]

LL

ks

[ealeaenfenenen]en]

LL

EE R EIEEIE

Running example: F = {AES;(-) | k € {0,1}%8}

White-box obfuscator: k — WB-AES; = AES(+)

VBB obfuscation restricted to AES

0
WB-AES, H@ @ lH@H

Adversary Simulator

Impossibility result does not apply
The AES-LUT program achieves VBB
» but does not fit into 1010 -10° TB

How to build a compact VBB AES implementation?
» could be impossible to achieve

iO restricted to AES: O(Fy) ~ O(P}) for any P, = P| = AES;,
Example of iO AES obfuscator:

1. k « extract-key(Py)
2. return reference implem AES,

» probably inefficient obfuscator!

If a (compact) VBB AES implementation exists
O(P;) ~O(VBB-AES;) = efficient iO < VBB

So what does iO-AES means?

VBB
AES
?

Obfuscation scale

We need something
» relaxed compared to VBB
» meaningful compared to iO

VBB
AES

further white-box
security notions

Obfuscation scale

We need something
» relaxed compared to VBB
» meaningful compared to iO = further notions

What could we expect from WBC?

The least requirement: key extraction must be difficult

Easy to satisfy for some variant of AES:

» H one-way = simple AES, implem unbreakable

We should expect more

Code-lifting cannot be avoided
» the adversary can always use the software

Code-lifting could be made unavoidable
» force the adversary to use the software

The software should then constrain the adversary
» be less convenient to distribute
» have restricted functionalities
» include security features

Less convenient to distribute

= Example: make the implementation huge and incompressible

WB-AES, AES
>< S k
< 10 KB

> 10 GB

= Possible use case: DRM

Example: make the implementation one-way

m

|
WB-AES, —>@+ m
4

C

Namely: turning AES into a public-key cryptosystem

Possible use case: light-weight signature scheme

Include security features

= Example: adding a password

else return L

takes time O(2!71)

o —

= WB implem = software secure element

= Possible use case: payment with token

Include security features

= Example: include a tracing mechanism

WB-AES; i —>@—> II = AES,(-) —»@—) id

3T stVA: WB-AESk,id — Il = AESk() = T(H) =id

= Possible use case: pay-TV

Include security features

= Example: include a tracing mechanism

WB-AES} 4,

WB-AES}, g,

3T stVA: WB-AESk,id — Il = AESk() = T(H) =id

= Possible use case: pay-TV

White-box security notions

Encryption scheme: &€ = (K, M, E, D)
» ESD:Kx M > M
» E(k,") = D(k,)™"
White-box compiler: Cg : (k,r) — [E}] = E(k,-)

Attack model:
» target: a white-box encryption program [F)] = Ce(k,$)
» CPA (chosen plaintext attack) — unavoidable
» CCA (chosen ciphertext attack) — oracle for D(k,-)
» RCA (recompilation attack) — oracle for C¢(%,$)

Attack goals:
» break (extract k), compress, inverse, be untraced

k+$r+<$ IE]]

[Ef] = Ce(k,7) @ }UBKCCA
Sl \ }
UBK-RCA

Challenger

Cg is (7,¢)-secure wrt UBK-{CPA/CCA/RCA}
<~

V A running in time 7 : Pr[k=Fk]<e

k< $,r<$
[EE] = Cf(kv 7”)
m <+ $

¢ = B(k,m) FNE : &7 }OW-CCA
129

o B
m=m

Challenger

OW-RCA

Cg is (7,¢)-secure wrt OW-{CPA/CCA/RCA}
<~
V A running in time 7 : Pr[rh=m]<e

Incompressibility

= Distance between a program P and a function f: X - Y

{z e X st P(x)# f(x)}
|X|

A(Paf):

« If A(P,f) =0 then P= f

k<8 r«+$] INC cea
[Bf] = Ce(k,7) — /

? ? (—
A(P,E(k,) < 5 and |P| < A ‘Q N
Challenger [Ellc,] ;

Cg is (7,¢)-secure wrt (X, 0)-INC-{CPA/CCA/RCA}
<~

V A running in time 7 : Pr[A(P,E(k,")) <d A |[P|<)A]<e

Incompressibility

(A, 9)-INC only makes sense for:

o~0

and

| ref implem | < A < r%in [[EL]]

Encryption scheme £
E:(kkm)->m®eG D:(k,m)~ m¢ medw ¢ @

» k= (G,w,e)
» G : RSA group with secret order w
» e€[2,w) coprime to w

White-box compiler C¢ : (k,7) = [E}]
» [Er] computes m/ in G
» blinded exponent: f=e+7r-w

C¢ is OW-CPA under RSA[G]
» RSA[G]: it's hard to compute /¢ for i
Cg is (A, 0)-INC-CPA (with A\ » log f) under ORD[G]

» ORDIG]: it's hard to compute the order of x Ll
» wrt an adversary producing algebraic programs

Disclaimer: toy example

» OW part = RSA

» INC part inefficient (linear in the size)
Designing £ with (efficient) OW Cg¢ = designing a PK
encryption scheme
Designing £ with (efficient) INC C¢ = designing an
incompressible encryption scheme

White-box crypto is about designing a compiler for an
existing encryption scheme

Real challenge: design a OW and/or INC compiler for AES

White-box implem of the decryption (pay-TV use case)

Principle: include secret perturbations of the decryption
functionality
[D}c] = Ce(k,7;C)
where
L ifceCc M
Dy(c) otherwise

[D.cl(e) = {

Perturbation-Value Hiding (PVH) security:

k8% r«$
[Dicl = Ce(k, 7| C)
cdcC Dr
[k,C]7C o Sc
—_— >
m (\/,
M = D(k, c) [Dk.c']
Challenger
Cg is (7,¢)-secure wrt C-PVH
<

V A running in time 7: Pr[m = D(k,c)] <e

User i gets P; = Cg(k,ri;C;)

» for random sets Cy cCy € ---€(C,, € M

Pirate program from ¢ traitors: II = A(P;,, Py, ..., Pi,)
» with A(TI, D(k,-)) negligible

PVH security = linear tracing procedure

p(i) = Pre < C\Cioy : T1(c) = D(k,¢)]

p(i)

0 11 2 13 N

Traceability

= User i gets P; = Cg(k,r;;Ci)

» for random sets Cy cCy € ---€(C,, € M

= Pirate program from t traitors: Il = A(P;,, Py, ..., P;,)
» with A(TI, D(k,-)) negligible

= PVH security = linear tracing procedure

p(i) = Pre < C\Cioy : T1(c) = D(k,¢)]

majority
output

0 11 2 13 N

Traceability

= User i gets P; = Cg(k,r;;Ci)

» for random sets Cy cCy € ---€(C,, € M

= Pirate program from t traitors: Il = A(P;,, Py, ..., P;,)
» with A(TI, D(k,-)) negligible

= PVH security = linear tracing procedure

p(i) = Pre < C\Cioy : T1(c) = D(k,¢)]

unanimous
output

0 11 2 13 N

User i gets P; = Cg(k,ri;C;)

» for random sets Cy cCy € ---€(C,, € M

Pirate program from ¢ traitors: II = A(P;,, Py, ..., Pi,)
» with A(TI, D(k,-)) negligible

PVH security = linear tracing procedure

p(i) = Pre < C\Cioy : T1(c) = D(k,¢)]

p(i)

0 11 2 13 N

User i gets P; = Cg(k,ri;C;)

» for random sets Cy cCy € ---€(C,, € M

Pirate program from ¢ traitors: II = A(P;,, Py, ..., Pi,)
» with A(TI, D(k,-)) negligible

PVH security = linear tracing procedure

p(i) = Pre < C\Cioy : T1(c) = D(k,¢)]

p(i)

0 11 2 13 N

Security hierarchy

= If £ is a secure encryption scheme

INC

U
OW = UBK < PVH

Security hierarchy

= If £ is a secure encryption scheme

INC

|
VBB = OW = UBK <« PVH <« VBB

Security hierarchy

= If £ is a secure encryption scheme

VBB

¢
INC

|
VBB = OW = UBK <« PVH <« VBB

Conclusion

WBC can be define as a restriction of cryptographic
obfuscation

» subset of programs (e.g. keyed permutation)
» relaxed security notions

More work needed to

» refine / define alternative security notions
» build candidate white-box compiler

Open challenge: INC/OW/PVH-implementation of AES

Science is overstepped by industrial usage in the field of WBC
» Digital content protection (pay-TV, DRM)
» Mobile payments
» Software protection

Yet no secure solution available in the public literature

Should we rely on the secret-spec model?
» Academic cryptographer: “over my dead body!”
» Industrial cryptographer: “only choice | have (for now)”

Open question: who beats who?
» secret-spec designer vs. state-of-the-art cryptanalyst

= Obfuscation notions (VBB, iO, BPO)
> “On the (Im)possibility of Obfuscating Programs” (Barak et al. CRYPTO 2001)

> “On Best-Possible Obfuscation” (Goldwasser—Rothblum, TCC 2007)

= White-box crypto (introduction, first constructions)

> “A White-Box DES Implementation for DRM Applications” (Chow et al. DRM 2002)

> “White-Box Cryptography and an AES Implementation” (Chow et al. SAC 2002)

= Presented white-box security notions

> “White-Box Security Notions for Symmetric Encryption Schemes” (Delerablée et al. SAC 2013)

= Related works

> “Towards Security Notions for White-Box Cryptography” (Saxena—Wyseur—Preneel, ISC 2009)
> “White-Box Cryptography Revisited: Space-Hard Ciphers” (Bogdanov—Isobe, CCS 2015)

> “Efficient and Provable White-Box Primitives” (Fouque et al. ePrint 2016)

Questions 7

	What is (cryptographic) obfuscation?
	What is white-box cryptography?
	White-box security notions
	Conclusion

